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Abstract
We consider the role of the third dimension in the conductivity of a quasi-two-
dimensional electron gas (Q2DEG). If the transverse correlation radius of the
scattering potential is smaller than the width of the channel, i.e. the width of the
transverse electron density distribution, then virtual scattering to higher levels
of the confinement potential becomes important, which causes a broadening of
the current flow profile. The resulting conductivity is larger than that obtained
from a quasi-classical two-dimensional Boltzmann equation. A magnetic field,
parallel to the driving electric field, effectively adds strength to the confining
potential. As a result, the width of the current flow profile decreases and a
positive longitudinal magnetoresistivity of the Q2DEG is expected.

1. Introduction

Conductivity of a quasi-two-dimensional electron gas (Q2DEG) is usually calculated by means
of a quasi-classical 2D Boltzmann equation (see, e.g., Stern and Howard 1967, Siggia and
Kwok 1970, Stern 1976, Ando et al 1982, Cantrell and Butcher 1985, Tang and Butcher
1988a, 1988b, Das Sarma and Hwang 1999 and references therein). Quantum corrections
to the 2D conductivity are assumed to be only due to the weak localization or interaction
mechanisms (see, e.g., the review by Kawaji 1994). The starting point of the quasi-classical
approach is the Hamiltonian

Ĥ =
∑
α,k2

(
Eα +

k2
2

2m

)
a†

α,k2
aα,k2 +

∑
α,β,k2,q2

Mα,β (q2)a
†
α,k2+q2/2aβ,k2−q2/2, (1)

where

Mα,β (q2) =
∫

dz �∗
α(z)U(q2, z)�β(z). (2)

Here U(q2, z) = ∫
d2r2 e−iq2·r2 U(r2, z) where U(r2, z) is a random scattering potential; the

subscript 2 denotes here and below the 2D in-plane vectors. Eα is the αth eigenvector of the
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quantum well, V (z), which confines the motion of the electrons in the z-direction. �α(z) is
the corresponding eigenfunction. A calculation of the potential V (z) and the wavefunctions
for a specific system may present a rather complicated quantum mechanical problem requiring
a simultaneous solution of the corresponding Schrödinger and Poisson equations.

In order to derive a quasi-classical 2D Boltzmann equation, one assumes that only the
highest occupied level, α0, of the potential V (z) is of importance and all transitions, both real
and virtual, to lower or higher levels can be discarded. If λz characterizes the width of the
wavefunction �α0(z), then the characteristic energy interval between the state Eα0 and the
neighbouring states can be estimated as �Eα0 ≈ h̄2

2mλ2
z
. Then the above assumption for the

real transitions is justified if the channel is narrow enough and the temperature is low enough,
�Eα0 � kB T .

Virtual transitions to other states may be caused by the random scattering potential
U(q2, z). Its off-diagonal matrix elements (2) are negligible if the scattering potential is
smooth, i.e. it is characterized by a large correlation radius, rc � λz . Then the scattering
potential is responsible only for an in-plane relaxation of the electron momenta of the
non-equilibrium two-dimensional electron gas (2DEG). One may then discard any possible
renormalization of the current due to an admixture of states with α �= α0 and retain only the
diagonal matrix elements Mα0 ,α0(q) in equation (1). A quasi-classical 2D Boltzmann equation
follows straightforwardly. If one is interested in the profile of the current flow density along
the z-coordinate, it coincides in this case with the electron density profile, determined by the
wavefunction of the α0-level, i.e., j (z) ∼ ρα0(z) = |ψα0(z)|2. The width of this profile may
be called the width of the channel.

A completely different situation arises in the opposite limit, rc � λz , to be called below
the quantum limit. The scattering potential U(q2, z) induces strong transitions to other levels
α �= α0 of the quantum well. The matrix elements Mα,β (q2) with α, β �= α0 cannot be
discarded, and the conventional approach based on a quasi-classical 2D Boltzmann equation is
not applicable. An admixture of other states with the wavefunctions, localized in much wider
regions than that of ψα0(z), may lead to a much broader z-profile of the current flow density.
Its decay along the z-axis is characterized by a length b, which may substantially exceed the
width λz .

The conductivity of a Q2DEG may now be sensitive to an external in-plane magnetic
field, which influences the effective λz-value and leads to a decrease of the effective width
of the channel, through which the current flows. As a result, a positive magnetoresistivity in
an in-plane magnetic field is expected. It is worthwhile to distinguish this mechanism of the
longitudinal magnetoresistivity from the other mechanism recently proposed by Dolgopolov
and Gold (2000), which considers a 2D system without taking any account of the third
dimension. The magnetic field polarizes electron spins and causes a change of the Fermi
energy and, hence, of the scattering time. The paper by Herbut (2001) discusses the screening
of the random potential in a system close to the metal–insulator transition and strongly spin
polarized by an external magnetic field. It was argued by Maekawa and Fukuyama (1980) that
a finite magnetoconductance in a parallel magnetic field can be due to the Zeeman splitting
effect on the weak-localization correction to the conductivity in the presence of a spin–orbit
interaction or electron spin scattering by localized magnetic moments. Depending on the
parameters, the sign may be either positive or negative.

It is emphasized that the mechanism that we propose here does not consider electron
spins or their polarization at all. It is of crucial importance below that the system is
quasi-two-dimensional rather than really two-dimensional. The role of a finite width of
the 2DEG was important in the theory proposed by Altshuler and Aronov (1981) and
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Dugayev and Khmelnitskii (1984) who considered a suppression of the weak-localization
corrections to the conductance in an in-plane magnetic field. This mechanism leads to a
positive magnetoconductance (negative magnetoresistivity). These types of correction are not
considered in this paper.

Generally, the influence of the third dimension on various physical properties of quasi-2D
systems has been addressed many times. We can mention here the paper by Jonson (1976) who
studied many-body effects and the applicability of various approximations to their calculation.
The effect of an in-plane magnetic field on interface excitations in the finite-width Q2DEG
was investigated in the series of papers by Kushwaha (1987a, 1987b, 1989).

2. The kinetic equation

A calculation of the conductivity of a Q2DEG in the quantum limit λz � rc cannot be carried
out within the framework of a conventional quasi-classical 2D Boltzmann equation. A quantum
approach is necessary, which takes into account the renormalization of all relevant quantities
due to an admixture of various levels, α �= α0, of the quantum well. We shall see below that
this is equivalent to explicitly accounting for the z-dependence of the current density flow.
This analysis can best be carried out using a quantum kinetic equation for the Wigner function.
A detailed discussion of a gauge-invariant derivation and an analysis of such an equation
is presented in our papers (Fleurov and Kozlov 1978, Levanda and Fleurov 1994, 2001). A
discussion of quantum kinetic equations can be found in the books by Mahan (1990), and Haug
and Jauho (1997), which also present introductions to the diagrammatic technique, proposed
originally by Keldysh (1965).

In our paper (Levanda and Fleurov 2001) two equations were derived, equations (30)
and (31), which have a gauge-invariant form and govern the kinetics of an electron gas in an
external electromagnetic field. Both of these equations are written in terms of the Keldysh
matrix Green functions and formally constitute eight equations for eight complex functions.
However, only two equations for two functions are independent and they read[

ε/ − 1

2m
P/

2 +
h̄2

8m
(∇/ R)2

]
Gr (p, R) = 1 + [Gr (p, R),	r (p, R)]+ (3)

and[
∂/

T +
1

2m
(P/ · ∇/ R + ∇/ R · P/ )

]
G K (p, R)

= 2{i[Gc(p, R),	c(p, R)]− − i[G̃c(p, R), 	̃c(p, R)]−
+ [G<(p, R),	>(p, R)]+ − [G>(p, R),	<(p, R)]+}. (4)

where the following definitions are introduced:

ε/ = ε − h̄

2
ej1

(
�

2

)
E(R) · ∇p;

P/ = p +
h̄

2
ej1

(
�

2

)(
1

c
B(R) × ∇p + E(R)∂ε

)
;

∂/
T = ∂T + ej0

(
�

2

)
E(R) · ∇p;

∇/ R = ∇R + ej0

(
�

2

)(
1

c
B(R) × ∇p + E(R)∂ε

)
;

j0(x) = sin(x)/x and j1(x) = sin(x)/x2 − cos(x)/x .
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We use four-coordinates R = (R, T ) and four-momenta p = (p, ε). The derivative with
respect to R in the operator � = h̄∂ p∂ R acts only on the fields E(R) and B(R). The other
derivatives, in the left-hand sides, with respect to R and p act on all the functions.

It is emphasized that the brackets in the right-hand side of equations (3) and (4) stand not
for commutators but rather for four-dimensional generalizations of the Moyal (sine) brackets
(Moyal 1949),

[ f (p, R), g(p, R)]− = 1

2i
{ f (p, R) � g(p, R) − g(p, R) � f (p, R)}

= f (p, R) sin

[
ih̄

2
�̂

]
g(p, R),

and of the Baker (cosine) brackets (Baker 1958),

[ f (p, R), g(p, R)]+ = 1
2 { f (p, R) � g(p, R) + g(p, R) � f (p, R)}

= f (p, R) cos

[
ih̄

2
�̂

]
g(p, R),

with the �-product of two functions defined by

f (p, X) � g(p, X) = f (p, X) exp

[
ih̄

2
�̂

]
g(p, X).

Here we have introduced the operator

�̂ =
←−
∂

∂ε

−→
∂/

T − ←−
∂/

T
−→
∂

∂ε
+

←−
∇/ R

−→
∂

∂p
−

←−
∂

∂p

−→
∇/ R,

which can be called a Poisson operator since the result of its action on a product of two functions
is similar to the Poisson brackets of these functions. The Groenewold (1946) notation is used,
according to which the left and right arrows over the differential operators indicate the action
either on the left or on the right functions in the product, respectively. The shape of the above
equations for Green functions in the Wigner representations and the use of the star-product
indicate a direct connection of this procedure to the deformation quantization for Wigner
functions. Many interesting mathematical and physical aspects of this type of quantization
were recently discussed by Zachos (2002).

Equations (3) and (4) are rather complicated and certain simplifications should be made.
We first start with the analysis of equation (3), which is a quantum analogue of the Hamilton–
Jacobi equation.

3. The Hamilton–Jacobi equation

Equation (3) allows one to find a retarded Green function Gr (p, R), determining the single-
electron spectrum of the system. Its imaginary part A(p, R) = −2 Im Gr (p, R) is often
called spectral function. In the representation chosen here, this function is directly connected
with the Wigner quasi-distribution function. If we neglect the external fields and scattering
processes (	r (p, R) = 0), and retain only the confinement potential V (Z), then this equation
describes the free motion of electron in the XY -plane and quantization of its Z -motion due
to the confinement potential. For the case of a harmonic potential, the quantization of the
electron motion in the Z -direction was analysed in our paper (Levanda and Fleurov 2001;
see also the discussion in the appendix), where the gauge-invariant equation for the Wigner
quasi-distribution function was found.

For any confinement potential V (Z), the Wigner quasi-distribution function as well as
the whole retarded function Gr decay exponentially with the growing |Z |. If a scattering
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mechanism is introduced, which is described by a mass operator 	r , it is reasonable to expect
	r to also decay exponentially with |Z |. Then the product Gr	r in the right-hand side of
equation (3) decays much more strongly than Gr , and hence the renormalization of the Wigner
quasi-distribution function due to scattering processes is negligible at large Z . It is also worth
noting that the correction to Gr due to a driving in-plane electric field E2 can only be of second
or higher even order. This feature was also outlined by Fleurov and Kozlov (1978). All these
corrections will be neglected in the next section, when solving the kinetic equation in the linear
approximation.

We will consider here the conductivity of a Q2DEG in which the electron motion in the
Z -direction is confined by a potential V (Z). We assume that electrons can move freely in
the XY -plane and are scattered by a random potential, which is on average homogeneous and
isotropic over the whole three-dimensional space. The characteristic scale of its fluctuations
can be neglected as compared to any scale important for the motion in the XY -plane. However,
following the discussion in the introduction, we will account for the finite scale of these
fluctuations when considering the Z -motion of the electrons. Then

〈U(r2, Z)U(r′
2, z′)〉 = Ū 2δ(r2 − r′

2)l(z − z ′). (5)

The subscript 2 denotes, here and below, quantities related to the XY -plane. Ū 2 is the mean
square fluctuation of the scattering potential. If the latter is due to short-range defects with a
concentration c, then Ū 2 = cU 2

d where Ud is the scattering potential of a defect. l(z − z′) is
the normalized correlation function for the scattering potential.

Now one can write the mass operator accounting for the s-scattering (in the XY -plane)
by the potential (5) as

	(ε; Z , pz) = Ū 2

(2π h̄)3

∫
d2 p2 d p′

z G(p2, ε; Z , p′
z)l̃(pz − p′

z). (6)

where l̃(pz) is the Fourier transform of the correlation function l(z − z′). p2 is the two-
dimensional momentum in the XY -plane. The superscripts r , >, and K on the mass operator
	 and Green function G in the Keldysh (1965) representation are suppressed here, since
equation (6) holds for all of them.

The renormalization of the Green function G in equation (6) due to scattering can be
disregarded. The non-equilibrium correction to the Green function G(p2, ε; Z , p′

z) in the
linear approximation is proportional to p2 · E2, and its contribution to the mass operator (6)
becomes also zero in the s-scattering case after integration over p2.

In the case of elastic s-scattering, the imaginary part of the mass operator (6),

�(Z , pz; ε) = i[	(0)<(Z , pz, ε) − 	(0)>(Z , pz, ε)],

does not depend on the electron momentum p2 in the XY -plane. The equilibrium Green

function in (6) depends on the difference ε − εp2 , with εp2 = p2
2

2m . Then, accounting for the
integration over εp2 in (6), we may also discard its dependence on ε and assume that

�(Z , pz) ≈ h̄

τ2l(0)

∫
d p′

z

2π h̄
ρ0(Z , p′

z)l̃(pz − p′
z) (7)

where ρ0(Z , pz) is the equilibrium Wigner function describing the electron motion in the Z -
direction. The Wigner function ρ(Z , pz) (at equilibrium or not) is connected with the Keldysh
functions

ρ(Z , pz) = i
1

γ

∫
dε d2 p2

(2π h̄)3
[G<((Z , pz; p2, ε)) − G>(Z , pz; p2, ε)] (8)
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where the factor γ is determined by the normalization condition∫
dZ

d pz

2π h̄
ρ(Z , pz) = 1.

Equation (7), together with equations (6) and (8), defines the time τ2 which characterizes the
electron scattering in the XY -plane. The factor l(0), which is necessary here from dimensional
considerations, is introduced in such a way that the time τ2 corresponds to the scattering time
in the XY -plane obtained with the quasi-classical Boltzmann equation.

4. The quantum Boltzmann kinetic equation; B = 0

The quantum Boltzmann kinetic equation (4) has a rather complicated shape and should be
simplified before we try to solve it. The model that we consider here assumes that there are
two fields acting on the electrons. These are a constant electric field E2 lying in the XY -plane,
and an electric field Ez = − 1

e
dV (Z)

dZ due to the confinement potential V (Z). The possible role
of a magnetic field will be discussed later.

Even now the equation looks too complicated. Further simplifications can be made, if we
take into account that our aim here is to calculate the electric current flowing in the XY -plane.
It can be expressed by means of a conditional moment of the Green function:

j2(Z) = 2ei
∫

dε

2π h̄

∫
d3 p

(2π h̄)3

p2

m
δG<(p2, ε; pz, Z) (9)

where δG<(p2, ε; pz, Z) is the non-equilibrium part of the Green function G<(p2, ε; pz, Z).
A more detailed discussion of the properties of the conditional moments can be found in our
papers (Levanda and Fleurov 1994, 2001 and references therein).

Calculating various space conditional moments of the quantum kinetic equation (4), one
obtains an infinite set of equations, which yield the so-called hydrodynamic formulation
of the problem (for details and relevant references, see Levanda and Fleurov 2001). We
restrict ourselves to the s-scattering in the XY -plane, which implies that the equations for the
components of the kinetic momentum are decoupled from the equations for higher powers of
the electron momentum. Three equations, corresponding to the three components of the vector
p, are obtained from equation (4) by multiplying it by p, and integrating its left- and right-hand
sides over the variables ε and p.

The equilibrium part of the resulting equation for the Z -component provides information
on the quantization of motion in the Z -direction, which can also be obtained from equation (3).
The non-equilibrium part is trivial with zeros in both the left- and right-hand sides, which
corresponds to the absence of a current in the Z -direction. The equations for the X- and
Y -components read

eE2n2ρ̄(Z) = 2
∫

dε

2π h̄

∫
d2 p2

(2π h̄)2
p2 cos

{
ieh̄E2

[←−
∂ε −→∂p

2 − ←−
∂

p
2
−→
∂ε

]}
Iz (10)

where

Iz =
∫

d pz

2π h̄
(G<(Z , pz; p2, ε)M̂	>(Z , pz; p2, ε)

− G>(Z , pz; p2, ε)M̂	<(Z , pz; p2, ε)) (11)

with

M̂ = cos

{
h̄

2

(←−
∂ Z−→

∂ pz − ←−
∂ pz

−→
∂ Z

)}



Quantum effects in the electron current flow in a quasi-2D electron gas 13733

and

ρ̄(Z) =
∫

d pz

2π h̄
ρ(Z , pz).

We have kept only the terms due to the Baker cosine brackets in the right-hand side of
the kinetic equation (10) and neglected the terms due to the Moyal sine brackets. The reasons
for taking this approximation may be outlined as follows. The Moyal brackets contain only
terms in odd powers of the fields. Therefore, considering the equation for the Z -component
we may obtain only a small correction to the equilibrium Wigner function ρ0(Z , pz) due to the
random scattering potential. These are the same corrections as were neglected in the previous
section. As for the XY -components, the contribution due to the Moyal brackets results in a
small renormalization of the driving term in the left-hand side of the quantum kinetic equation.
This type of renormalization was actually calculated by Fleurov and Kozlov (1978), who called
it the non-local correction to the driving term. This renormalization is proportional to a typical
scattering potential value, e.g. the concentration of defects, and can be neglected here.

We analyse here equation (10) in the linear-in-E2 approximation, meaning that

cos
{
ieh̄E2

[←−
∂ε −→∂p

2 − ←−
∂

p
2
−→
∂ε

]} ≈ 1. Using now equations (6)–(8) we write

Iz = i
∫

d pz

2π h̄
δG(Z , pz; p2, ε) M̂�(Z , pz)

= i

τ2

∫
d pz

2π h̄

∫
d p′

z

2π h̄
δG(Z , pz; p2, ε) M̂ρ0(Z , p′

z)l̃(pz − p′
z) (12)

where δG(Z , pz; p2, ε) = δG>(Z , pz; p2, ε) = δG<(Z , pz; p2, ε) is the non-equilibrium part
of the Keldysh functions. The fact that the non-equilibrium corrections to all four Keldysh
functions (including Gc and G̃c) coincide follows from the principle of detailed balance, which
for the quantum collision integral was proved by Fleurov and Kozlov (1978).

We also assume that the motion in the Z -direction may be separated from that in the
XY -plane, meaning that

δG(Z , pz; p2, ε) = δG2(p2, ε) ρcur (Z , pz)

where the function ρcur (Z , pz), normalized to one, will be found from the kinetic equation.
This assumption allows us to rewrite equations (10) and (12) in the form

eE2n2ρ̄0(Z) = 2

τ2l(0)
P2

∫
d pz

2π h̄

∫
d p′

z

2π h̄
ρcur (Z , pz)M̂ρ0(Z , p′

z)l̃(pz − p′
z) (13)

where

P2 = i
∫

dε

2π h̄

∫
d2 p2

(2π h̄)2
p2 δG2(p2, ε).

Integrating by parts in (13) and carrying out Fourier transformations, the equation can be
represented in the form

eE2n2ρ̄0(Z) = 2

τ2l(0)
P2

∫
d pz

2π h̄

∫
d p′

z

2π h̄

∫
dz e−i(pz−p′

z)zl(z)

× ρcur

(
Z +

1

2
z, pz

)
ρ0

(
Z +

1

2
z, p′

z

)
, (14)

which is an integral equation for the function ρcur (Z , pz).
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4.1. Analysis of the kinetic equation

We can analyse equation (14) for a general shape of the confinement potential in the two limiting
cases. First, we may assume that the characteristic correlation radius for the scattering potential
is much smaller than the width of the confinement potential, i.e., we assume that l(z) ≈ δ(z).
Then equation (14) becomes

eE2n2ρ̄0(Z) = 2

τ2l(0)
P2

∫
d pz

2π h̄

∫
d p′

z

2π h̄
ρcur (Z , pz)ρ0(Z , p′

z) = 2

τ2l(0)
P2ρ̄cur (Z)ρ̄0(Z)

(15)

where

ρ̄cur (Z) =
∫

d p′
z

2π h̄
ρcur (Z , pz).

As follows from equation (15), the distribution ρ̄cur (Z) does not depend on Z . The current
density becomes

j2(Z) ∝ σ2E2 (16)

where σ2 = e2n2τ2
m is the Drude conductivity of the 2DEG.

The result seems to be very strange, since the current density is independent of Z . This
means that the current density profile, ρ̄cur (Z), is infinitely broad. The result for the current
flow profile is virtually the same as if there were no confinement potential at all. Physically, this
is connected with the fact that the scattering potential causes virtual transitions to upper energy
levels of the confinement potential where the wavefunctions are broader than in the ground
state. In the case of the δ-correlated scattering potential, all the levels equally contribute to
ρ̄cur (Z) and the latter becomes infinitely broad.

This scenario is extreme and certainly not realistic. First, there is no such thing as an
exactly δ-correlated scattering potential; it always has a finite width. Second, this peculiar
Z -independent behaviour of the non-equilibrium correction δG means that, at high enough
values of the coordinate Z , δG may become larger than the value of the Green function G at
equilibrium, since the latter deceases exponentially with |Z |. This means that the linear-in-
the-driving-field E2-approximation cannot be applied for such values of Z . We shall discuss
possible roles of non-linear effects below.

Now we consider the opposite limiting case, where the characteristic correlation radius
for the scattering potential is much larger than the width of the confinement potential. Then the
convergence of the integrals in the kinetic equation is limited by the width of the confinement
potential. Therefore, we may assume that the correlation function is a constant, l(z) ≈ l(0),
or l̃(p) ≈ 2π h̄l(0) δ(p). Then the integrand in equation (13) can be written in terms of the
�-product as ρcur (Z , pz) � ρ0(Z , pz). The equilibrium Wigner function ρ0(Z , pz) is a so-
called �-gen function of the confinement potential (see, e.g., Zachos (2002) for definitions and
properties of the �-gen functions). In particular they possess a property according to which

ρ0(Z , pz) � ρ0(Z , pz) = 2π h̄ρ0(Z , pz).

This allows us to conclude that the function ρcur (Z , pz) = ρ0(Z , pz) solves equation (13). As
a result we get

j2(Z) = σ2E2ρ̄0(Z). (17)

Now the current density profile coincides with the equilibrium electron density profile,
meaning that excitations to higher energy levels of the confinement potential are of no
importance. Integrating over Z , we conclude that the two-dimensional conductivity is finite
and coincides with σ2. The result (17) can be obtained directly from the quasi-classical 2D
Boltzmann equation.
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4.2. The harmonic confinement potential

Here we consider the electric conductivity of a Q2DEG created by a harmonic confinement

potential V (Z) = mω2 Z2

2 with the amplitude of the zero-point oscillations u =
√

h̄
mω

. We also
assume that the correlation function for the scattering potential has a Gaussian shape:

l(z) = 1

rc

√
2π

exp[−z2/2r2
c ]. (18)

This case allows for an analytic solution over the whole range of the ratios rc/u, from zero to
infinity. The two limits of this ratio, rc � u and rc � u, correspond to two limiting cases
considered above.

The properties of the equilibrium gauge-invariant Wigner quasi-distribution function in a
harmonic potential including a homogeneous magnetic field are described in our earlier paper
(Levanda and Fleurov 2001; see also the discussion in the appendix). If we assume here that
the electron Fermi level lies within the two-dimensional subband corresponding to the ground
state of the harmonic confinement potential, the Z -dependent part of the equilibrium Wigner
function for these electrons is

ρ0(Z , pz|u) = 4π h̄u
√

π exp

{
−u2 p2

z

h̄2

}
ρ̄0(Zu) (19)

where

ρ̄0(Z |u) ≡ 1

u
√

π
exp

(
− Z 2

u2

)
describes the electron density profile at equilibrium.

Now the functions (18) and (19) are substituted into (14) and we obtain an integral
equation for the function ρcur (Z , pz). This function is looked for also in a Gaussian shape,
i.e., we assume that ρcur (Z , pz) = ρ0(Z , pz|b) where the function ρ0(Z , pz|b) is defined
by equation (19), in which the amplitude of the zero-point oscillations u is replaced by an
unknown parameter b. Carrying out all the necessary integrations, equation (14) becomes

eE2n2ρ̄0(Z) = 2P2
r̃c

ubτ2
exp

{
−Z 2

(
1

ũ2
− r̃2

c

2ũ4

)}
(20)

where
1

ũ2
= 1

u2
+

1

b2

and
1

r̃2
c

= 1

r2
c

+
1

u2
+

1

b2
. (21)

Now we compare the Z -dependence of the right-hand side of equation (20), and that of the
left-hand side, determined by the distribution ρ̄0(Z). The requirement that these dependences
coincide yields the equation

1

ũ2
− r̃2

c

2ũ4
= 1

u2

whose solution,

1

b2
= − 1

r2
c

+

√
1

r4
c

+
1

u4
, (22)
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Figure 1. The dependence of the relative resistivity � of the Q2DEG on the ratio of the correlation
radius of the scattering potential, rc , and the width of the channel u.

determines the scale of the current flow profile (9). b is now the effective width of the channel,
which does not necessarily coincide with the width u of the electron density profile. One can
readily see that b ≈ u only in the limit of large correlation radius rc � u. However, it may
become very large, b ≈ 2u2

rc
� u, in the quantum limit, rc � u. These are just the two limiting

cases discussed in section 4.1.
The density profile of the electric current flow (9) in the Q2DEG becomes

J(Z) = σ2
1√

2π r̃c

exp

(
− Z 2

b2

)
E2 (23)

where σ2 = e2n2τ2
m is the 2D Drude conductivity. Integrating equation (23) over Z one gets

the conductivity of the Q2DEG, σ = σ2
b√
2r̃c

, which strongly depends on the ratio of the
width of the electron density profile u and the correlation radius rc of the scattering potential.
The Drude formula is applicable only if the long-range fluctuations are characteristic of the
scattering potential, i.e., rc � u; then b√

2r̃c
→ 1, and σ = σ2. However, in the quantum

limit, rc � u, when the scale of the scattering potential fluctuations is smaller than the width
of the channel, a strong deviation from the Drude formula is expected. The effective width
of the channel where the current actually flows, b ≈ u2

r2
c

� u, may become much larger than
the width u of the equilibrium electron density profile. As a result, the conductivity may also
become much larger: σ = σ2

u2

r2
c

� σ2.
This type of behaviour is illustrated in figure 1 where the relative resistivity � = σ2/σ is

plotted as function of the relative correlation radius rc/u of the scattering potential. It starts
from zero at small correlation radii and saturates at 1 at large radii.



Quantum effects in the electron current flow in a quasi-2D electron gas 13737

4.3. Applicability of the linear approximation

The above results are obtained within the linear response approximation. In order to probe the
applicability limits of this approximation, one considers the Z -profile of the drift velocity (see
equation (43) in Levanda and Fleurov (2001)):

vdri f t = 1

ρ̄0(Z)

∫
dε

2π h̄

∫
d2 p2

(2π h̄)2

p2

m
δG2(p2, ε). (24)

This definition of the drift velocity yields also the conventional equation J(Z) =
en0(Z)vdri f t(Z), in which n0(Z) = n2ρ̄0(Z) is the electron density at equilibrium.

One can readily see that differing current and density profiles may lead to growth of the
drift velocity with increasing Z . This indicates that however small the electric field E2 is, there
are distances that are large enough for conditions to be achieved where the linear approximation
in E2 is violated. The analysis of this non-linear problem is rather complicated and requires a
proper account of various inelastic processes. However, the most important (and sufficient for
our purposes) conclusions can be reached in a much simpler way.

We obtain a rough but sufficient (upper limit) criterion for the applicability of the linear
approximation by requiring that the additional energy acquired by an electron due to the current
flow does not exceed the temperature, i.e. vdri f t pF � kB T where pF is the Fermi momentum.
Hence, the linear approximation is violated if Z > Z∗ where

Z∗2 = u2b2

b2 − u2
ln

∣∣∣∣eτ2 pF

m

u

r̃c

E2

kB T

∣∣∣∣.
It is important to emphasize that although this condition is obtained for the harmonic potential
well considered here, its meaning is more general. For any potential well there exists a value
Z∗ such that at larger distances the linear approximation does not hold. At Z > Z∗ one
has to consider a non-linear problem involving contributions of various inelastic scattering
mechanisms (say, electron–phonon interactions). Without making detailed calculations, one
can understand that in this non-linear region the scattering becomes much stronger and the
current becomes much smaller than what follows from its profile obtained in the linear
approximation; hence, its contribution to the total current can be neglected.

When integrating the current flow density over Z , one may just cut the integration at
|Z | = Z∗, which provides a reasonable estimate δσ for the non-linear corrections to the 2D
conductivity:

δσ

σ
= −2

∫ ∞

Z∗/b
e−x2

dx .

Z∗ increases with the decreasing electric field, and at Z∗ � b this correction is hardly
observable.

5. Current flow in an in-plane magnetic field

It is worthwhile discussing here the influence of an in-plane magnetic field B on the
conductivity. According to the intuition based on classical ideas about the electron motion, we
do not expect any influence of an in-plane magnetic field, especially if it is directed parallel
to the electric field. Nevertheless, as we demonstrate below, such an influence exists and an
increase of the resistivity in a longitudinal magnetic field is expected. In the presence of a
magnetic field B the kinetic equation (10), linearized with respect to E2, takes the form

eE2n2ρ̄0(Z) +
e

mc
vdri f t(Z) × B = 2

∫
dε

2π h̄

∫
d2 p2

(2π h̄)2
p2 Iz . (25)
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We will again restrict ourselves to the harmonic confinement potential and the Gaussian
correlation function for the scattering potential. The choice of the equilibrium Wigner function
is described in the appendix. With the proper normalization, the ground state, n = 0, Wigner
function takes a form similar to (19):

ρ0(Z , pz|ū(B)) = 4π h̄ū(B)
√

π exp

{
− ū(B)2 p2

z

h̄2

}
ρ̄0(Z) (26)

where

ρ̄0(Z |ū(B)) ≡ 1

ū(B)
√

π
exp

(
− Z 2

ū(B)2

)
.

The only difference from (19) is that the length defined by the equation ū−4(B) = u−4 + l−4
B

is substituted for the zero-point amplitude u of the harmonic oscillator. This new length now
characterizes the electron density profile. It is smaller than u and decreases when the magnetic
length l−2

B = eB
h̄c decreases with the growing magnetic field.

The calculation of the conductivity in an in-plane magnetic field proceeds along the same
lines as in the absence of the magnetic field. We may directly use the results of section 4.2,
substituting the length ū(B) for u. Then the relative 2D resistivity (in units of 1/σ2) as a
function of the magnetic field is

�(B) =
√

2r̃c(B)

b(B)
(27)

where

1

b2(B)
= − 1

r2
c

+

√
1

r4
c

+
1

ū4(B)
, (28)

and
1

r̃2
c (B)

= 1

r2
c

+
1

ū2(B)
+

1

b(B)2
. (29)

The density of the electric current is now

J(Z) = σ2
1√

2π r̃c(B)
exp

(
− Z 2

b2(B)

)
(30)

and the magnetic field-dependent length b(B) determines the width of the current flow profile.
The above expressions are obtained under the assumption that the magnetic field B is

parallel to the driving electric field E2, when the magnetic field-dependent term in the left-
hand side of equation (25) is zero. If the magnetic field still lies in the XY -plane but is not
parallel to the electric field, possible corrections to the resistivity are small at least at magnetic
fields that are not extremely high.

One can now study the magnetic field dependence of the resistivity (27) for various values
of the ratio rc/u. This dependence is exhibited in figure 2, which shows the variation of the
relative resistivity �(B) as a function of the magnetic field, measured in units of B0 = h̄c

eu2 .
The characteristic field B0 appearing here is just the value of the magnetic field at which the
magnetic length lB becomes equal to the equilibrium width of the channel u. At B = 0 the
curves start from various values, which become smaller as the correlation radius rc becomes
smaller. The dependence of these starting points on the correlation radius is, in fact, depicted
in figure 1.

In the limit of high magnetic fields the resistivity grows and the curves tend to the common
saturation level, 1. The effective width of the channel ū(B) decreases with increasing magnetic
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Figure 2. Relative 2D resistivity, �(B), as a function of the longitudinal magnetic field in units of
B0 = h̄c

eu2 for different ratios rc/u: 0.3: ♦; 0.5: �; 1: ×; 3: ◦; 10: — —.

field, and at a large enough magnetic field it will become smaller than the correlation radius
rc of the scattering potential. This means that the magnetic field may drive the system from
the quantum (rc � ū) to the classical (rc � ū) limit, when the absolute resistivity acquires
its Drude value �2 = 1/σ2. This is an interesting feature of the conductivity of a Q2DEG in
an in-plane magnetic field: the classical limit is reached at high rather than at low magnetic
fields. Measuring the high-field limit of the resistivity yields its Drude value—the more so,
since the weak-localization corrections are also suppressed by the magnetic field.

Experimentally, this limit requires very high magnetic fields. If we take a typical width
of the channel to be about 100 Å, then the characteristic field B0 is about 10 T. So high a static
magnetic field is achievable in modern magnetic facilities. Pulse magnets allow one to reach
even higher magnetic fields. One can also try to work with wider channels, where B0 may be
substantially smaller. However, increase in the width of the channel is limited from above by
the requirement of quantization in the Z -direction.

It may be easier to carry out measurements in the low-field limit (B < B0) where a positive
magnetoresistivity can be expected. We can write the low-field expansion of the resistivity as

�(B)

�(0)
= 1 + k

B2

B2
0

(31)

where

k = r2
c

4
√

u4 + r2
c

u2 + r2
c − √

u4 + r4
c√

u4 + r4
c − u2

.

The dependence of this coefficient on the ratio rc/u is shown in figure 3. It starts from k = 0.5
at rc � u and tends to 0 at rc � u. This curve also reflects the feature of the Q2DEG resistivity
in a magnetic field observed in figure 2: that the resistivity is most sensitive to the magnetic
field in the quantum limit and does not depend on it in the classical limit.
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Figure 3. The dependence of the coefficient k in the low-field expansion (31) of the resistivity
�(B)/�(0) on the ratio of the correlation radius of the scattering potential, rc , and the width of the
channel u.

6. Conclusions

The results of this paper emphasize that the difference between the 2DEG and Q2DEG, however
subtle it is, may be of crucial importance for the transport processes. If the scattering potential
comprises fluctuations with a small enough correlation radius, the profile of the electron
current may become broader than the profile of the electron density. Longitudinal positive
magnetoresistivity is proposed as an experimentally observable consequence.

The formal analysis is carried out for a harmonic confinement potential and a
homogeneously distributed scattering potential, characterized by a Gaussian correlation
function. Then all the integro-differential kinetic equations are solvable analytically.
Consideration of other shapes of the confinement and scattering potentials will require
numerical analysis and may lead to various peculiar details of the behaviour of the current flow
profile and the resistivity. However, we believe that the most important qualitative features
outlined in this paper will hold.

A negative longitudinal magnetoresistivity observed in thin In2O3−x films by Ovadyahu
et al (1985) was attributed to the suppression of the weak-localization correction in accordance
with the theory due to Altshuler and Aronov (1981) and Dugayev and Khmelnitskii (1984).
There was also an investigation of this suppression in silicon inversion layers carried out by
Menz and Wheeler (1987).

A longitudinal magnetoresistivity was also observed in SiGe layers (Okamoto et al 1999a,
1999b). The authors attributed the effect to the electron spin polarization (a theory was
presented by Dolgopolov and Gold (2000)). This explanation seems to be quite reasonable,
since the electron concentrations in these experiments are so low that a complete spin
polarization is possible. The mechanism proposed in this paper may become more important
at a higher electron concentration. We do not know currently of any relevant experimental
data and the question remains open.
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Appendix A. Appendix. The Wigner function of a harmonic oscillator in a magnetic
field

As shown in Levanda and Fleurov (2001), the Wigner function of a harmonic oscillator in a
magnetic field satisfies the equation{
ε +

h̄2

6
mω2(∂ pz)2 +

h̄2

4m
[∇X − mω2 Z n̂Z ∂ε + mωBn̂B × ∇p]2

− 1

m

[
p − n̂Z

h̄2

12
mω2∂ pz∂ε

]2}
ρW (ε,p,R) = 0, (A.1)

where n̂z and n̂B are the unit vectors in the directions of the Z -axis and of the magnetic field B,
respectively; ωB = eB

mc . A set of functions solving this equation reads, in the case of n̂B ‖ n̂y ,

ρW (ε,p, Z |n) =
√

mω̄

π h̄

√
h̄2

6mω2�2
exp

[
−mω̄

h̄

(
(Z + Z0)

2 +
6�2

mω2

)]

× cos

(
pz

h̄

√
24�2

mω2

)
θ(�2)Ln

(
4

h̄ω̄

(
mω̄2

2
(Z + Z0)

2 +
p2

z

2m

))
(A.2)

where the Ln are the Laguerre polynomials, ω̄2 = ω2 +ω2
B , θ(x) is the Heavyside step function.

� is defined by means of the equation

0 = �2 + ε −
(

1

2
+ n

)
h̄ω̄ +

1

2
mω2z2 − p2

y

2m
− 1

2
mω̄2 Z 2

0,

and

Z0 = (px − mωB Z)ωB

mω̄2
. (A.3)

The Wigner functions (A.2) integrated over the variable ε which are of most interest to us here
are

ρW (P, z|n, px) = exp

[
− 2

h̄
√

ω2
c + ω2

H

(
mω̄2

2
(z + Z0)

2 +
p2

z

2m

)]

× Ln

(
4

h̄ω̄

(
mω̄2

2
(Z + Z0)

2 +
p2

z

2m

))
. (A.4)

It is important to emphasize that the Z -dependence appears only via the combined term Z0,
equation (A.3). This means that the coordinate origin along the Z -axis is actually not defined.
Its shift is equivalent to a corresponding shift of the quantum number px , which is the electron
momentum in the direction perpendicular to the magnetic field. One can follow this degeneracy
directly from equation (A.1). Any function f of the variable Z0 commutes with the operator
acting in the left-hand side of this equation on the Wigner function. Therefore, multiplying
Wigner functions, whether integrated over ε, equation (A.4), or not, equation (A.2), by any
function f (Z0), one again gets functions satisfying equation (A.1) or its version integrated over
ε. This type of degeneracy holds only for quadratic potentials. Coming back to equation (3),
from which (A.1) has been deduced, one sees that terms that are quartic or of higher order in
Z in the confinement potential would result in terms depending on Z not necessarily via the
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combination Z0. These terms will lift the degeneracy and fix the zero on the Z -axis. This
degeneracy also does not exist for exactly zero magnetic field, but appears for any (however
small) non-zero magnetic field.

In the case of a harmonic oscillator and a homogeneous magnetic field we should take
care of fixing the zero from physical considerations. It is quite clear that the preferable choice
is that the minimum of the confinement potential lies at Z = 0. This requirement is fulfilled
if f (Z0) = δ(px − mωB Z). Then we may write the integrated-over-ε Wigner function (A.4)
in the form

ρW (P, z|n, px) = δ(px − mωB Z) exp

[
−

(
Z 2

ū2
+

ū2 p2
z

h̄2

)]
Ln

(
2

(
Z 2

ū2
+

ū2 p2
z

h̄2

))
, (A.5)

where ū−4 = u−4 + l−4
B , and l−2

B = eB
h̄c is the magnetic length. The same result can be obtained

if the eigenfunctions for this problem are found and then substituted into the definition of the
gauge-invariant Wigner function (equation (16) in Levanda and Fleurov 2001).
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